Changing the ligand specificity of CooA, a highly specific heme-based CO sensor.

نویسندگان

  • Hwan Youn
  • Robert L Kerby
  • Gary P Roberts
چکیده

The CO-specific heme-based sensor CooA regulates the ability of Rhodospirillum rubrum to grow on CO as an energy source. Only CO triggers the conformational change of CooA essential for the protein to function as a transcriptional activator. A structurally informed mutagenesis, followed by an in vivo screening method, allowed the isolation of a series of novel CooA variants that show very substantial response to imidazole. Compared with wild-type CooA, the ligand selectivity between imidazole and CO had been changed in some variants by roughly three orders of magnitude. Remarkably, different CooA variants also showed the ability to discriminate among imidazole derivatives, strongly implying a mechanism of precise interactions between the affected residues and the various ligands. Although wild-type CooA and imidazole-responsive CooA variants appear to recognize their respective ligands by fundamentally different mechanisms, several lines of evidence suggest that they respond by a similar C-helix repositioning that results in the rearrangement of the DNA-binding domains responsible for specific DNA contact. These results have implications for the molecular basis of both the imidazole responsiveness in the variants and the stringent CO specificity of wild-type CooA.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Unexpected NO-dependent DNA binding by the CooA homolog from Carboxydothermus hydrogenoformans.

CooA, the CO-sensing heme protein from Rhodospirillum rubrum, regulates the expression of genes that encode a CO-oxidation system, allowing R. rubrum to use CO as a sole energy source. To better understand the gas-sensing regulation mechanism used by R. rubrum CooA and its homologs in other organisms, we characterized spectroscopically and functionally the Fe(II), Fe(II)-NO, and Fe(II)-CO forms...

متن کامل

A model theoretical study on ligand exchange reactions of CooA.

Rr-CooA is a CO-sensor heme protein, where binding of CO with the heme group stimulates a transcriptional activator activity of CooA. In this process, the heme undergoes a series of ligand exchanges. In the ferric form, the heme has Cys75 and Pro2 as the axial ligands. In the reduced ferrous form, the heme has His77 instead of Cys75 as an axial ligand with Pro2. Only in the reduced form, CooA c...

متن کامل

Spectroscopic and redox properties of a CooA homologue from Carboxydothermus hydrogenoformans.

CooA is a CO-sensing transcriptional activator that contains a b-type heme as the active site for sensing its physiological effector, CO. In this study, the spectroscopic and redox properties of a new CooA homologue from Carboxydothermus hydrogenoformans (Ch-CooA) were studied. Spectroscopic and mutagenesis studies revealed that His-82 and the N-terminal alpha-amino group were the axial ligands...

متن کامل

Structure and function of the heme-based sensor proteins

CooA is a CO-sensing transcriptional activator that is a member of the cyclic AMP receptor protein (CRP)/ regulator for fumarate and nitrate reduction (FNR) family of transcriptional regulators. CO is sensed by a heme prosthetic group in CooA and controls the transcriptional activator activity of CooA. CooA is the first known example of a transcriptional regulator containing a heme as a prosthe...

متن کامل

Functionally critical elements of CooA-related CO sensors.

CooA is a heme-containing transcriptional activator that enables Rhodospirillum rubrum to sense and grow on CO as a sole energy source. We have identified a number of CooA homologs through database searches, expressed these heterologously in Escherichia coli, and monitored their ability to respond to CO in vivo. Further in vitro analysis of two CooA homologs from Azotobacter vinelandii and Carb...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 279 44  شماره 

صفحات  -

تاریخ انتشار 2004